Q84: Largest Rectangle in Histogram
Last updated
Was this helpful?
Last updated
Was this helpful?
直达:
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height =[2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area =10
unit.
For example,
Given heights =[2,1,5,6,2,3]
,
return10
.
计算以每个bar为高的最大矩形区域面积,返回最大值;
如果bar的高度逐渐增高,则围城的面积逐渐增大,不需要计算;
如果bar的高度开始递减(设为k),则要计算递减之前的最大面积,为了避免重复计算,从右向左计算至小于height[k]的时候停止计算即可;
可在数组后面添加一个高度为0的bar,用于辅助清空临时堆栈;
从左向右遍历,再从右向左计算面积,明显用堆栈存储效率更高,由于可以通过下标访问到高度,存储下标即可。
索引i=0, height[0] = 2,堆栈为空,直接将2的下标0压栈,i++;
i=1,height[1]=1 < 2, 开始从右向左计算面积;
i=0的bar的面积是0的长度1乘以高度2,即为2,保存res=2;
堆栈为空,停止弹出。
i=1, 堆栈为空,将i=1压栈, i++;
i=2, height[i]=5>height[stk.top()]=1, 将i=2压栈,i++;
i=3, height[i]=6>height[stk.top()]=5. 将i=3压栈,i++, 此时,stk=[1,2,3];
i=4, 此时height[i]=2<height[stk.top()], 开始从右向左计算面积;
弹出栈顶h=stk.top()=3, stk.pop(), 此时的矩形区域的长是(i-stk.top()-1), 高是height[h], area = (i-stk.top()-1)*height[h] = 6, res更新为6;
弹出栈顶h=stk.top()=2, area = (i-stk.top()-1) * height[h] = (4-1-1)*5 = 10.
i=4, stk.top()=1 < height[i]=2, 4入栈,i++;
i=5, 5入栈,i++, 此时stk=[1,4,5];
i=6, 遍历到添加的0高度,开始从右向左计算面积,并清空堆栈;
h=stk.top()=5, stk.pop(), area = (6-stk.top()-1) * height[5] = 3, stk = [1,4], res = 10;
h=stk.top()=4, stk.pop(), area = (6-stk.top()-1) * height[4] = 8, stk = [1], res = 10;
h=stk.top()=1, stk.pop(), 堆栈为空,area = (i)*height[h] = 6, res = 10;
由此可以返回最大值10